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Abstract: As we already know that optical fiber communication is now a days used in the world’s communication 

network. Optical fiber can be used as a medium for telecommunication over long distances and networking of 

respective signals as it is light weight and can be bundled in the form of cables. Fiber optics is the only technique 

known today to have the power to meet the strong demands for flexibility and high bandwidth posed by the rapidly 

growing communication networks. The optical systems were primarily used in point-to-point long distance links [10]. 

As long period grating (LPG) is an important component of optical fiber communication system, thus, long period 

grating can be designed in a effective manner to use it as a important tool to sense the refractive index of any medium.  

In this paper we have studied about in depth concepts of Long period grating (LPG) and coupled mode equations have 

been solved for long period grating to analyze the grating structures that exhibit attractive optical properties that make 

them suitable for optical communication system as a wavelength filter. At the end, we have studied the effect of 

coupling length on exchange of power and its variation between the core mode and different cladding modes at 
=1.55µm for a specific set of parameters defined under the observation for a fiber. 

 

Keywords: Optical Fiber, Communication network, Long Period Grating, Coupled Mode analysis, cladding modes, 
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I. INTRODUCTION 

 

Fiber gratings are often classified as fiber Bragg gratings 

(FBGs) or long-period gratings (LPGs), according to 

grating period. LPGs typically have a grating period in the 

range of from 100 μm to 1 mm, whereas FBGs have a sub-

micron period. A long-period fiber grating (LPG), which 

couples light from a fundamental guided core mode into 

co-propagating cladding modes at various wavelengths, 

was first reported by Vengsarkar and co-workers in1996 

[1].LPGs have also been used as gain-flattening filters for 

erbium-doped fiber amplifiers [2], and as optical fiber 

polarizer’s [3].  

LPGs have a number of unique advantages such as the fact 

that simple techniques are required to fabricate them, their 

compact construction (they are intrinsic fibre devices) and 

non-conducting (dielectric) structure that is immune to 

electromagnetic interference (EMI). LPGs have a number 

of unique advantages such as the fact that simple 

techniques are required to fabricate them, their compact 

construction (they are intrinsic fibre devices) and non 

conducting (dielectric) structure that is immune to 

electromagnetic interference (EMI) [4]. Long period 

gratings are periodic photo-induced devices which couple 

light from core mode to various cladding modes of a 

single mode fiber. The cladding modes are quickly 

attenuated and this result in series of loss bands in the 

transmission spectra of the grating as shown in Fig 1 

below. Each of these loss bands corresponds to coupling to 

distinct cladding modes [5]. 

 

 
Fig 1: Transmission spectra of long period grating[5] 

 

The phase matching condition between the fundamental 

mode and the forward propagating cladding mode for the 

long-period grating (LPG), is given by [6] 

  m,

0

cl

eff

co

eff nn  

Where λres is the resonance wavelength, nco is the effective 

refractive index of the core mode and ncl,m is the effective  

index of the m
th 

cladding mode[9]. Λ is the grating period 

which is much longer for co propagating coupling at a 

given wavelength than for the counter propagating 

coupling [7]. Thus, the rejection wavelengths of LPG are 

sensitive to such environmental changes [8].  

As mentioned earlier a long period fiber grating is formed 

typically by introducing a periodic refractive index 

modulation in the core of the optical fiber. LPG couples an 

incident fundamental core mode (LP01) to forward 

propagating cladding modes (LP0m) when the phase 
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matching conditions are satisfied. The cladding 

modes are lossy and can be easily attenuated by 

introducing a bend. Hence, the guided core mode can be 

phase matched to a co-propagating LP02, LP03 cladding 

modes and many more for a specific grating  period. The 

pictorial description implies that for a given 0 , depending 

on the periodicity   one can induce mode coupling 

between the fundamental core mode and several different 

cladding modes. The table below defines the various 

parameters for the fiber under our study and defines the 

grating period and propagation constant for coupling to 

various cladding modes [9]. 

Fiber Parameters Values 

Core refractive index (n1) 

Cladding refractive index 

(n2) 

Core radius (aco) 

Cladding  radius (acl) 

1.46 

1.45 

 

4.1µm 

62.5µm 

Grating Parameters value 

Refractive index 

modulation ∆n
 0.0001 

 

Table1: Parameters of Optical Fiber under consideration 

[9] In Table 1, we consider a fiber of parameters 𝑛1 = 1.46, 

𝑛2= 1.45, 𝑛3= 1.0 (air), 𝑎co= 4.1μm and 𝑎cl = 62.5 μm to 

calculate neff using both three layer model and two layer 

model. The effective indices for fiber with refractive index 

profile and first order perturbation compared with the fiber 

at 𝜆= 1.55μm is tabulated in below Table 2. 

 
Table 2: The effective indices for fiber with refractive 

index profile and first order perturbation compared with 

the fiber at 𝜆= 1.55μm. Thus , it can be seen that for 

cladding modes , the propagation constants and modal 

fields obtained using two layer model significantly differ 

from that obtained using three layer model. 

II.  COUPLED MODE THEORY FOR LONG 

PERIOD FIBER GRATINGS (LPFG) 

As discussed earlier LPG is formed by introducing a 

periodic refractive index modulation in the optical fiber 

with periodicity of 100µm to 1000µm[11].It is a device 

based on coupling between the propagating core mode and 

co-propagating cladding modes. The core cladding mode 

interactions in a fiber grating can be understood by 

treating the coupling among the core mode and the 

multiple cladding modes [11]. The most popular method 

for studying power exchange between core and cladding 

modes of a long period grating is the coupled mode theory. 

Coupled mode theory is essentially a perturbation analysis 

which assumes that the modal fields of the original fiber 

remain unchanged in the presence of the small periodic 

index variations [11]. This approach leads to first order 

coupled differential equations for the z-dependent 

amplitudes of the coupled core and cladding modes. In 

most cases, the individual resonances are sufficiently 

narrow and spectrally well-separated so that coupling 

between the core mode and a single cladding mode well 

describes the transmission spectrum in a specified band of 

wavelengths. For such cases, a simple two-mode coupled 

mode theory is employed . For cases, where the core 

mode-cladding mode resonances overlap one another or a 

large number of resonances fall in the specified spectral 

band, all the cladding modes which are resonant in the 

band must be included simultaneously in the coupled 

mode theory. We first present the simple two-mode 

coupled mode theory which leads to analytical solutions of 

the differential equations presented in this Section.  

 

To begin with the coupled mode analysis for a long period 

grating, we consider an optical fiber with a general 

refractive index profile n
2
(r) in which there is a sinusoidal 

z-dependent periodic index variation 

Kznzn sin)( 22  in the core region. The total field 

at any value of z can thus be described as 

    zim
cl

zi
co

m
clco er)z(Ber)z(A

 


            (1) 

 

where  rco and co  represent  normalized modal field 

and propagation constant of the core mode,  rm
cl  and 

m
cl  represent normalized modal field and propagation 

constant of the phase matched cladding mode of  the fiber. 

A(z) and B(z) are the amplitudes corresponding to core and 

cladding mode (where z is the direction of propagation). 

Since the modes are orthonormal and normalized for unit 

power,     22
zandz BA directly give the power in the 

core mode and cladding mode respectively. In the absence 

of perturbation, A and B are constants and equal to their 

value at z=0; the perturbation couples power among the 

modes as they propagate and hence, A and B are z-

dependent. Since  rco and  rm
cl  are the modal 

fields of the fiber in the absence of any perturbation, they 

satisfy the following equations 

                                              

      0222

0

2
 rnkr cococot            (2) 

      0m2m22

0

m2
 rnkr clclclt      (3) 
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The total field satisfies the following wave 

equation   

   0222
02

2
2 




 


 znnk

z
t          (4) 

We now substitute the total field   from equation (1) into 

equation (4) and use the slowly varying approximation  

(i.e.
dz

dB

dz

Bd
and

dz

dA

dz

Ad


2

2

2

2

 )   to obtain the 

following equation    

 

       022
mm

m22
0

mm 
 zi

cl
zi

co
zi

clclco
zi

co
clcoclco ezBezAznke

dz

dB
i

dz

dA
ei

  
       (5)                                       

 
where equations (2)  and (3) have been used to simplify 

the expression. Multiplying equation (5) by  rco , 

integrating over the whole cross-section of the fiber and 

using the orthonormality condition   0m rdrclco   

we get the coupled mode equation depicting evolution of 

modal amplitude of core mode with propagation distance, 

z, as 

            
 

 
 

 

drr

drrzn

zBe
k

i

drr

drrzn

zA
k

i
dz

dA

coco

cl

a

co
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co
coco

co

a

co

co 



























0

m

0

2
2
0

0

0

2
2
0

22




        (6) 

Where, 
m
clco   . Similarly, by  multiplying 

 rm
cl

  and  integrating over the whole cross-section of 

the fiber we get  the coupled mode equation depicting 

evolution of modal amplitude of cladding mode with 

propagation distance, z, as 

 
 

 
 

drr

drrzn

zB
k

i

drr

drrzn

zAe
k
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dz
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m
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m
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m
cl

a
m
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m
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m
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co

a
m
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m
cl 































0

0

2
2
0

0

0

2
2
0

22

            (7) 

Equations (6) and (7) can be further simplified by defining 

of coupling coefficients  22211211 and  ,,  as 

drr

drrn
k

coco

co

a

co
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With Kznzn sin)( 22  . The equations (6) and (7) 

can now be expressed as 

       KzezBiKzzAi
dz

dA zi sin2sin2 1211
             (9)              

       KzezAiKzzBi
dz

dB zi sin2sin2 2122
        (10)                              

 

In order to understand the physical significance of the self 

coupling coefficients 2211  , , we now define a new 

setof variables,     zcoi
ezAza


 and    

z
cl

i
ezBzb

m


 

and rewrite the coupled mode equations in terms of a(z) 

and b(z) as  

    bKziaKzi
dz

da
co sin2sin2 1211         (11) 

 

    aKzibKzi
dz

db
cl sin2sin2 2122
m         (12) 

 

As can be seen from equations (11) and (12) 

   zsin2andzsin2 2211 KK   are the small first 

order perturbation corrections (
410 ~n ) to the 

propagation constants 
m
cland co  of the core mode 

and cladding mode of m
th

 order respectively due to 

presence of perturbation. Hence, in order to simplify the 

algebra to obtain analytical solution, 2211and   are 

neglected in comparison to the propagation constants

m
cland co . Incorporating this and substituting 

      -iKziKz
i

Kz expexp
2

1
sin   one can rewrite 

equations (11) and (12) as  

       zKizKi ezBezB
dz

dA     1212
         (13) 

                             

       zKizKi ezAezA
dz

dB     2121
     

 (14) 

 

For weak perturbations, 2112 and  are small and 

hence, the typical length scale over which the mode 

amplitudes change appreciably ~ 2112 /1/1   , which 

is large. If we integrate equations (13) and (14) over a 

short length L, we obtain         

    
 

    
  
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
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
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2
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(15)     

    
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
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


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
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


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
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2

L
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L
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





  2/sin

2
2/sin

2 2121

 

 

In order to estimate the magnitude of each term in 

equations (15) and (16), we use the typical values of 

propagation constants for LP01 and LP09 modes as given in 

Table 1.2,  
19,0 μm02916807.82592743.58550955.5  clco  at

μm55.10  . We choose   to satisfy the phase 

matching condition, i.e., K  and m1053 6L  

leading to     

  
 

m1091.26
2

2/sin 6


 L

K

LK




  

  
   

m1017
2

112/sin 6














KK

LK
 

Thus, for K , the contribution can be 



ISSN (Online) 2321-2004 
ISSN (Print) 2321-5526 

 
                             INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING 
                      Vol. 3, Issue 6, June 2015  

Copyright to IJIREEICE                    DOI  10.17148/IJIREEICE.2015.3418            86 

ignored. The evolution of amplitude of 

core and cladding modes with z can now be 

expressed as  

      zizKi ezBezB
dz

dA   1212                          (16) 

      zizKi ezAezA
dz

dB     2121              (17)                  

where Γ  is known as detuning or phase mismatch factor 

defined as  

      (18) 

 

Differentiating equation (23) with respect to z and 

substituting equation (24), the following second order 

differential equation is obtained 

02

2

2

 A
dz

dA
i

dz

Ad
      (19) 

Where, 2112  . 
 

Using the boundary conditions that A(z=0)=A0 and 

B(z=0)=B0, we obtain the following analytical solutions 

for A(z) and B(z)  

  












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
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Where 
2

2

4



  . We assume that unit power is 

initially launched only in the core mode, i.e., A (z=0)=1 

and B(z=0)=0 and  the above equations reduce to a 

following simplified form 

  






 
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

)sin(
2
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  










)zsin(iezB

zi





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The power in the core mode and the cladding mode at any 

z can now be expressed as 

     zsinzAzAPco 


 2

2

2

1        (24) 

     zsinzBzBPcl 


 2

2

2

       (25) 

For phase matched condition, i.e., the detuning factor

0 ,   and the power in the core mode and 

cladding mode can be expressed as
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  zPco 2sin1    (26)                                                        

             zsinPcl 2                  (27) 

As can be predicted from the above equations power is 

continuously exchanged between the core mode and the 

phase matched cladding mode. Complete power transfer 

from the core mode to the cladding mode takes place after 

a propagation distance of 













2
z  also referred to as 

coupling length. Hence coupling length cl is defined as  





2
cl            (28) 

 

III.  COUPLING COEFFICIENTS 
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It may be noted that  2112    as defined in 

equation using the normalization condition equation can 

be expressed as 
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    (29)  

hence, the coupling coefficient  is a function of the index 

change and the modal overlap between the core guided 

mode and phase matched cladding mode over the region of 

perturbation. Since the coupling coefficient is directly 

proportional to the overlap integral, the modal distribution 

of the cladding mode will have a strong influence on its 

magnitude. It may be reiterated that the index modulation 

has no azimuthal variation, the coupling of the symmetric 

core guided mode can occur only to the symmetric 

cladding modes (l=0), since, for all other cladding modes, 

the overlap integral is zero. The coupling coefficient can 

be expressed analytically as in equation (30) below   

 
Fig2:Variation of coupling coefficient with cladding mode 

order for 1.55µm. 

IV.  COUPLING LENGTH 

To signify the role of the coupling length lc in determining 

the core mode power coP  and cladding mode power clP , 

we now plot curves to depict exchange of power between 

the core mode and the phase matched cladding mode (

0 ) with length of the grating. Fig2 shows the 

continuous exchange of power is between the core mode 

and different phase matched cladding mode with length 

for grating period which corresponds to resonant 

wavelength of 1.55µm. the full power from the core mode 

is transferred to the cladding mode. Thus, the power 

bounces back and forth between the core mode and the 

cladding mode after a spatial period clz . If the length 
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is not an integral multiple of coupling length, an 

incomplete exchange of power between the core mode and 

the phase matched cladding mode takes place even at 

resonant wavelength.    

 
Fig3: Exchange of power and variation in coupling length 

between the core mode and different cladding mode at 
=1.55um for parameter defined in table1 

 

 
Table 3: Coupling length and kappa of LPFG for coupling 

to different cladding modes at 1.55 µm 

 

 
Fig4: Exchange of power and variation in coupling length 

between the core mode and different cladding mode at 
=1.54µm for parameter defined in table1 

Thus, we can plot the propagation curve for coupling 

length between the LP (01) mode with other cladding 

modes at wavelength 1.55µm (as shown in Fig 3) and at 

wavelength 1.54µm (as shown in Fig 4 above) using the 

set of points tabulated in Table3 above. Hence, we 

observed  that we cannot get complete power exchange 

from core mode to cladding mode for any length of fiber. 

 

V.  RESULT AND CONCLUSION 

Thus we have studied the detailed theory of Long fiber 

grating (LPG) by deriving the coupled mode equations. 

We have analysed the Variation of coupling coefficient 

with cladding modes order at  the wavelength 1.55µm and 

also plotted the propagation curve for coupling length 

between LP(00) mode with other cladding modes at 

wavelength 1.55µm and 1.54µm repectively. Thus, it can 

be concluded that we cannot get complete power exchange 

from core mode to cladding mode for any length of fiber. 

This analysis of LPG shows that they can be used as gain-

flattening filters for erbium-doped fiber amplifiers and 

optical fiber polarizer’s. 
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Prppagation curve for coupling length for coupling b/w LP01 core mode and others cladding 

modes at 1.55 micro m wavelength 
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